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1. Introduction

Thermodynamics of a black hole is one of the most interesting issues in the theoretical

physics. Bekenstein has suggested that the entropy of a black hole is proportional to its

surface area [1] and Hawking’s analysis for its origin from the point of view of quantum

field theory [2] has led to the result that the black hole has a thermal radiation with the

temperature TH = κ/2π, where κ is its surface gravity. Since then, there are many studies

for thermodynamics in a cavity with a finite size in various black holes [3 – 9].

A complete explanation for the final state after the evaporation of the black hole

is important but it has not been achieved yet since the full quantum gravity has been

still unknown. However, there are two candidates for quantum gravity, which are the

string theory and the loop quantum gravity. By the string/black hole correspondence

principle [10], stringy effects cannot be neglected in the late stage of a black hole. In the

string theory, coordinates of the target spacetime become noncommutating operators on a

D -brane as [xµ,xν ] = iθµν [11], where θµν is an anti-symmetric matrix which determines the

fundamental cell discretization of spacetime much in the same way as the Planck constant

~ discretizes the phase space. Recently, it has been shown that Lorentz invariance and

unitary, raised in the Weyl-Wigner-Moyal *-product approach, can be achieved by assuming

θµν = θ diag(ǫ1, . . . , ǫD/2) [12 – 14], where θ and D are a constant and the dimension of

spacetime [15]. In ref. [16]. there has been the study on the thermodynamics of the

Reissner-Nordström (RN) black hole, considering the effects of space noncommutativity.

In this work, we would like to study thermodynamics of a static and spherically sym-

metric black hole, considering the effects of noncommutative geometry. Especially, we wish

to point out an analogy between the noncommutative black hole and the RN black hole,

which has been commented shortly in ref. [17]. We shall show that the parameter θ in the

noncommutative black hole plays a similar role with an electric charge in RN black hole.

In section 2, we introduce a noncommutative black hole and examine the relation between
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the mass and its horizons. Comparing the noncommutative black hole to the RN black

hole, it can be shown that there is an analogy between them in section 3. In section 4, we

analyze the thermodynamic properties of the noncommutative black hole in a cavity with

a finite size and check the thermodynamic stability of the black hole. It can be found that

these properties are similar to those of the RN black hole. Finally, some discussions are

given in section 5.

2. Schwarzschild black hole inspired by the noncommutative geometry

We would like to examine the metric of the Schwarzschild black hole when there exists

the noncommutativity of spacetime. It has been shown that noncommutativity eliminates

point-like structures in favor of smeared objects in flat spacetime [12]. The effect of smear-

ing is mathematically implemented by replacing the position Dirac-delta function with a

Gaussian distribution of the width
√

θ. In a static, spherically symmetric case with this

logical connection, the mass density of a gravitational source is chosen as [13]

ρθ =
M

(4πθ)3/2
exp

(

− r2

4θ

)

, (2.1)

where the total mass M is diffused throughout the region of linear size
√

θ and the θ is a

constant parameter representing noncommutativity.

For a static and spherically symmetric metric, the density (2.1) and the conservation

law tell us that the energy-momentum tensor is given by T µ
ν = diag(−ρθ, pr, p⊥, p⊥), where

the radial and the tangential pressure are given by pr = −ρθ and p⊥ = −ρθ − 1
2r∂rρθ,

respectively. Then, solving the Einstein equations of motion, we obtain the line element as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 (2.2)

with

f(r) = 1 − 2m(r)

r
= 1 − 4M

r
√

π
γ

(

3

2
,
r2

4θ

)

, (2.3)

where the mass distribution m(r) = (2M/
√

π)γ(3/2, r2/4θ) is straightforwardly obtained

from the density (2.1), and the lower incomplete gamma function is defined by

γ (a, z) ≡
∫ z

0
ta−1e−tdt. (2.4)

Note that we only change the point-like structure of the Schwarzschild black hole to a

smeared object so that the red-shift function (2.3) has a similar form to Schwarzschild

metric except the mass distribution m(r). Moreover, it can be easily checked that eq. (2.3)

is reduced to the Schwarzschild metric in the limit of r/
√

θ → ∞, that is, m(r) → M .

However, the presence of noncommutativity changes the Schwarzschild-like behavior

into the RN-like one in the region where the noncommutativity cannot be neglected, which

will be dealt with in detail in the next section. As a short preview, we see that there are

two horizons, i.e., the inner (Cauchy) horizon rC and the outer (event) horizon rH , and

there exists the minimal mass M0 below which no black hole can be formed. Those facts
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Figure 1: The red-shift function f(r) is shown with respect to r/
√

θ. There is no horizon for

M =
√

θ < M0(top), while one degenerate and two horizons exist for M = M0 ≈ 1.9
√

θ(middle)

and M = 3
√

θ > M0(bottom), respectively.

r0
rH

M0

M

Mass

Figure 2: The solid, the dashed, and the dotted lines show the relations between the mass and

the horizon of the noncommutative, the scaled RN, and the Schwarzschild black holes, respectively,

where “scaled” means rH = (α2 − 1)r̃+ and r̃ indicates the radial coordinate in the RN black hole.

are seen from figure 1. Moreover, at the minimal mass M = M0, the inner and the outer

horizons are met at the minimal horizon r0 (rC ≤ r0 ≤ rH). The minimal mass is more

explicitly seen in the mass relation as follows: It results from rH = 2m(rH) that the total

mass is related to the event horizon by

M =
rH

√
π

4γH
, (2.5)

where γH = γ
(

3
2 ,

r2
H

4θ

)

. Then, the minimal mass M0 is explicitly seen in figure 2.

It seems to be appropriate to note that we can hide the parameter θ in the red-

shift function by redefining mass and the radial coordinate as M → M ′ = M/(2
√

θ) and

r → r′ = r/(2
√

θ) so that the function (2.3) is reduced to f(r) = 1−4M ′γ(3/2, r′2)/(r′
√

π).

Then, it is deduced from the mass relation M ′ = r′H
√

π/[4γ(3/2, r′2H)] that both the radius

and the mass of the minimal black hole are proportional to
√

θ and can be written as
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r0 = 2α
√

θ and M0 =
√

θπ/(4α2e−α2

), where the constant α ≡ r′0 is determined by

2α3e−α2

= γ

(

3

2
, α2

)

, (2.6)

and we can find α ≈ 1.51122 numerically, so we get r0 ≈ 3.02244
√

θ and M0 ≈ 1.90412
√

θ.

3. Near extremal limit and analogy with the RN black hole

In spite of the similarity of the metric (2.3) to the Schwarzschild black hole, one might

think from figure 2 that the mass profile of the noncommutative black hole has a similar

behavior to that of the RN black hole in the vicinity of the minimal horizon r0. Since the

extremal limit for the RN black hole is given by M̃ → Q̃ or r̃+ → Q̃, the extremal limit

for the noncommutative black hole can be taken as rH → r0, in which case rC also goes to

r0. So, this section is mainly devoted to the analogy with the RN black hole in the near

extremal limit. At this purpose, we first recall the Hawking temperature of the RN black

hole. The metric of the RN black hole is given by

f̃(r̃) = 1 − 2M̃

r̃
+

Q̃2

r̃2
, (3.1)

where M̃ and Q̃ are the mass and the electric charge of the black hole. The inner (r−) and

outer (r+) horizons are given by r̃± = M̃ ±
√

M̃2 − Q̃2. Since the mass and the charge can

be written as M̃ = (r̃+ + r̃−)/2 and Q̃ =
√

r̃+r̃−, we can rewrite the mass in terms of r̃+

and Q̃, similarly to eq. (2.5),

M̃ =
1

2

(

r̃+ +
Q̃2

r̃+

)

≥ M̃0 = Q̃, (3.2)

where the equality is satisfied with r̃+ = r̃0 = Q̃. The Hawking temperature is obtained as

TRN
H =

r̃+ − r̃−
4πr̃2

+

=
r̃2
+ − Q̃2

4πr̃3
+

. (3.3)

Then, the Hawking temperature of the near extremal RN black hole is written as

TRN
H ≃ r̃+ − Q̃

2πQ̃2
+ O(r̃+ − Q̃)2. (3.4)

On the other hand, the Hawking temperature of the noncommutative black hole is

calculated as

TH =
1

4πrH

[

1 − Mr2
H√

πθ3/2
exp

(

−r2
H

4θ

)]

. (3.5)

For the limit of rH ≫ 2
√

θ, it recovers the Hawking temperature of the Schwarzschild black

hole TH = 1/(4πrH ). Now, the Hawking temperature near extremal regime is given by

TH ≃ ξ(rH − r0)

2πr2
0

+ O(rH − r0)
2, (3.6)
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where the mass relation (2.5) is used and ξ = α2 − 1.

Comparing eqs. (3.4) and (3.6), one can easily find the relations between the horizons

by identifying

rH = ξr̃+, (3.7)

r0 ≡ 2α
√

θ = ξQ̃, (3.8)

then, eq. (3.6) becomes

TH ≃ r̃+ − Q̃

2πQ̃2
+ O(r̃+ − Q̃)2, (3.9)

which concludes TH ≃ TRN
H in the leading order. Thus, the noncommutative black hole

behaves similar to the RN black hole in the near extremal limit. Moreover, the noncom-

mutative parameter is related to the charge of the RN black hole by

θ =
ξ2Q̃2

4α2
. (3.10)

However, the rescaled radius rH = ξr̃+ does not match the two minimal masses M0

and M̃0, since r0 6= M0 whereas r̃0 = M̃0. In order to find out the relation between the

two masses M and M̃ , we first expand eq. (2.5) in the near extremal limit,

M ≃ M0

[

1 + ξ

(

rH − r0

r0

)2
]

+ O(rH − r0)
3. (3.11)

Next, eq. (3.2) is expanded in the near extremal limit as

M̃ ≃ Q̃



1 +
1

2

(

r̃+ − Q̃

Q̃

)2


+ O(r̃+ − Q̃)3. (3.12)

So, the two masses are related in the near extremal limit as (M −M0)/M0 ≃ 2ξ(M̃ − Q̃)/Q̃

in the leading order. In fact, the curve for the RN black hole in figure 2 is plotted with

respect to the rescaled radius rH = ξr̃+.

4. Thermodynamics of the noncommutative black hole

We now consider a cavity with the finite size R. The local temperature on the boundary

of the cavity is given by [5]

T =
TH

√

f(R)
. (4.1)

It can be seen from figure 3 that the local temperature of the noncommutative black hole

behaves like the RN (Schwarzschild) black hole for the small (large) black hole.

The temperature has two extrema: one is the local maximum at rH = r1 and the other

is the local minimum at rH = r2. There is one small black hole for 0 < T < T2 and one

large black hole for T > T1, where Ti = T |rH=ri
with i = 1, 2. For the case of T2 < T < T1,

there are three black hole solutions.
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r0 r1 r2 R
rH

T1

T2

T

Temperature

Figure 3: The solid, dashed, and dotted lines show the relations between the local temperature and

the horizon of the noncommutative, the scaled RN, and the Schwarzschild black holes, respectively.

For R = 10 and θ = 0.2, we obtain r0 ≈ 1.35167, r1 ≈ 2.17241, r2 ≈ 6.66667, T1 ≈ 0.0377456, and

T2 ≈ 0.0206748.

Since the entropy is proportional to the area of event horizon by

S =
A

4
= πr2

H , (4.2)

and the first law of thermodynamics dE = TdS should be satisfied for a fixed R, we obtain

the energy as

E = M0 +

∫ S

S0

TdS = M0 + 2π

∫ rH

r0

r′HT (r′H , R)dr′H , (4.3)

Here, the boundary condition E = M0 for rH = r0 is considered and the thermodynamic

energy of the RN black hole is

ERN = M̃0 + 2π

∫ r̃+

r̃0

r̃′+TRN(r̃′+, Q̃, R̃)dr̃′+, (4.4)

where the local temperature of the RN black hole is written as

TRN =
TRN

H

f̃(R̃)
. (4.5)

Moreover, our definition of energy (4.3) is consistent with that of the Schwarzschild black

hole in ref. [7] for the limit of θ → 0, and the energy is positive definite as shown in figure 4.

In order to check the stability of the noncommutative black hole, we calculate the heat

capacity as

CA =

(

∂E

∂T

)

R

, (4.6)

where A = 4πR2 is the area of the boundary of the cavity. The figure 5 shows the behavior

of the heat capacity. Since the heat capacity is positive for r0 < rH < r1 and rH > r2, the

small and the large black holes are stable. In the case of r1 < rH < r2, the black hole is
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r0 R
rH

E0

E

Energy

Figure 4: The solid, the dashed, and the dotted lines show the relations between the energy and

the horizon of the noncommutative, the scaled RN, and the Schwarzschild black holes, respectively.

For R = 10 and θ = 0.2, we obtain r0 ≈ 1.35167 and E0 ≈ 0.904251.

r0 r1 r2 R
rH

CA

Heat Capacity

Figure 5: The solid, the dashed, and the dotted lines show the relations between the local temper-

ature and the horizon of the noncommutative, the scaled RN, and the Schwarzschild black holes,

respectively.

unstable since the heat capacity is negative. And the heat capacity approaches zero as rH

goes to r0 or R. This stability can be examined by considering the free energy.

The off-shell free energy of the noncommutative black hole within the cavity is given by

F = E(rH , R) − TS(rH), (4.7)

where E and S are given from eqs. (4.3) and (4.2), respectively, and T is an arbitrary

temperature. figure 6 shows the behavior of the free energy as a function of the horizon

for several temperatures. For 0 < T < T2 there is a small stable black hole, while there

exists a large stable black hole for T > T1. For the case of T2 < T < T1, the small and the

large black hole are stable and the intermediate black hole is unstable. Then, the extrema
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rH

F

Free Energy

T = ����
1

2
T2

T = T2

T = ������������������������
T1 + T2

2

T = T1

T = ����
3

2
T1

Figure 6: The free energy has one minimum for 0 < T < T2 and T > T1 and three extrema for

T2 < T < T1. The number of the extrema gives the number of possible black holes. The stable

black holes appear when the free energy has the local minimum, while the unstable black holes

appear when it has the local maximum.

of the off-shell free energy can be obtained from

(

∂F

∂rH

)

R,T

= 0, (4.8)

which is nothing but T = T (rH) for a given T , where T (rH) is the local temperature (4.1).

5. Discussion

It is interesting to note that the pressure of the smeared object is negative so that it

can be considered “akin” to the cosmological constant in de Sitter universe [13]. In fact,

the inside of the inner horizon rC has de Sitter-like behavior, which can be seen from

the line element near the origin [13, 14]. However, we are interested in the fact that the

temperature of the noncommutative black hole vanishes when the horizon radius reaches

the minimal horizon [18]. We have shown that the noncommutative black hole has an

extremal behavior near the minimal mass, and all thermodynamic quantities are similar to

those of the near-extremal RN black hole at least in the leading order.

In connection with the relations (3.7) and (3.8), the coordinates r and r̃ are connected

by r = ξr̃ and the two redshift functions (2.3) and (3.1) also have similar form. To see

this, we expand the functions in the near extremal limit:

f(r) ≃ ξ

r2
0

[

(r − r0)
2 − (rH − r0)

2
]

+ O(r(H) − r0)
3, (5.1)

f̃(r̃) ≃ Q̃−2
[

(r̃ − Q̃)2 − (r̃+ − Q̃)2
]

+ O(r̃(+) − Q̃)3. (5.2)

Comparing these two equations, one finds a relation f(r) ≃ ξf̃(r̃) in the leading order.

Then, the radial parts of the two metrics yield the line elements satisfying the relation of
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ds2 ∼ dr2/f(r) ≃ ξdr̃2/f̃(r̃) ∼ ξds̃2, whereas the time coordinates have the same scale,

dt = dt̃.

One might think that our result is a little dubious in the sense that general relativ-

ity breaks down and quantum gravity should be considered when the noncommutative

length is identified with the Planck scale, although we have not fixed the noncommu-

tative parameter as the Plank scale in the present calculation. To address this issue,

the total mass and the radial coordinate are redefined as M → M ′ = M/(2
√

θ) and

r → r′ = r/(2
√

θ) for convenience. Then, thermal energy (4.1) and mass (2.5) can be

written as T = T (r′H , R′)/
√

θ and M = M(r′H)
√

θ, respectively, where T and M are in-

dependent of θ. To affect the back reaction of the geometry, the thermal energy should be

comparable to the total mass of the black hole. So, if we assume that the locally maximal

radiated energy E = T1 ≃ 0.015/
√

θ at rH = r1 ≃ 4.8
√

θ in figure 3 is assumed to be

equal to the total mass M(rH = r1) ≃ 2.4
√

θ, then it can be shown that the quantum

back-reaction cannot be neglected for this non-extremal black hole since the noncommu-

tative length should be
√

θ ∼ ℓPl ∼ 10−34 cm [13]. This calculation has been done for the

large cavity size R & 100
√

θ. Therefore, as expected, the back-reaction effect can not be

neglected when the noncommutative parameter is identified with the Plank constant since

at this scale the radiated energy is comparable to the size of the black hole. Now, we want

to investigate the above possibility in the near extremal limit which is a main part of the

present work. Note that in this limit T ∼ ǫr2
0/R

2 in the leading order, and M is order of 1,

where ǫ = (rH − r0)/r0 ≪ 1 and R ≫ r0. Thus, at the Planck scale
√

θ ∼ ℓP l, the radiated

energy is calculated as T ∼ ǫ(r0/R)2M ≪ M . It means that the quantum back-reaction

can be suppressed at the Plank scale of the noncommutativity parameter as well as at the

scale
√

θ ≫ ℓP l since the radiated energy is small compared to the size of the black hole.

In the end, the noncommutativity in the near extremal limit cools down the black hole so

that quantum back-reaction may be suppressed at least in this thermodynamic analysis. Of

course, the complete answer is not yet known because of absence of the consistent quantum

gravity.

Finally, we would like to make a couple of comments why this work is interesting. The

noncommutativity appears in the D-brane in the string theory and its intriguing spacetime

structure seems to be very special. However, this kind of noncommutativity also appears in

the model of a very slowly moving charged particle on the constant magnetic field [19] and

the Chern-Simon’s theory [20]. In these regards, some noncommutative properties happen

in various models. As we discussed so far, it appears in the near extremal RN black hole

in the thermodynamic analysis if the noncommutative parameter is identified with the

squared electric charge with some constants. Moreover, the metric of the near extremal

noncommutative black hole has been explicitly identified with that of the near extremal

RN black hole. So, we hope various properties of the noncommutative black hole along

with the thermodynamic similarity can be studied in terms of the near extremal RN black

hole. Conversely speaking, the near extremal RN black hole which has been widely studied

in the black hole physics shares some properties of the near extremal noncommutative

black hole. On the other hand, the noncommutative black hole is nonsingular and has

de Sitter-like geometry near center [13]. This is the key to the thermodynamic analogy
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between noncommutative black holes and RN black holes in the near extremal limit, since de

Sitter-like geometry gives inner (Cauchy) horizon in addition to the outer (event) horizon.

In fact, de Sitter core can be seen in most regular black holes [21], which have asymptotic

Schwarzschild geometry. They are also expected to be thermodynamically similar to the

RN black hole in the near extremal limit. Furthermore, it would be interesting to compare

the statistical entropy between the noncommutative black hole and the RN black hole in

the near extremal limit.
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